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dedicated to the theoretical aspects of ponderomotive forces. 

Also, we mention the qualification of 4 projects of the Alexandru 
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ISEF 2022, Atlanta – USA, 7-13 May: 

 Green Interpenetrated III. Silicone-Based Elastomeric Webs 
Engineered as Wave Energy Harvesters - Natalia Ionescu, 18, 
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17, International Theoretical High School of Informatics, 
Bucharest, Mihai Vârlan, 17, “Mihai Viteazul” National College, 
Bucharest, Matei Iosip, 17, Hermann Oberth German School, 
Bucharest; 

 Applications of Electromagnetic Forces in Medicine - Cristiana 
Andreea Murgoci, 18, International Theoretical High School of 
Informatics, Bucharest; 

 Demyelinating: a Research into the Use of Electrical Models in 
Studying Demyelinating Diseases - Despina Gica, 18, “Mihai 
Viteazul” National College, Bucharest. 

On 15th June, we had the Research Communication Session of the 
Alexandru Proca Center. 
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Explained Usage of Quaternions and 

Transformation Matrices in the Development of a 

Computer-Assisted Pilot Helmet 

Albei Victor-Eduard 
“Tudor Vianu” National College, Bucharest & National Institute for Research and Development in Electrical 

Engineering ICPE-CA Bucharest (INCDIE ICPE-CA) 

eduard.albei@gmail.com

Abstract - This paper aims to provide an 

explanation of the basics of manipulating three-

dimensional vectors through quaternion operations 

and/or transformation matrices. The paper captures 

the practical use of this knowledge in the design of 

a computer-assisted pilot helmet. 

Index Terms: quaternion, matrix, geometry, 

heads-up display, orientation, human interface 

I. Mathematical Considerations 

A point in space, 𝑝 , can be 

represented in a three-dimensional 

Cartesian coordinate system as a triplet of 

values 𝑥, 𝑦, 𝑧 ∈ ℝ as follows: 

𝑝 = 𝑥𝑖 + 𝑦𝑗 + 𝑧�⃗⃗� 

Where 𝑖, 𝑗 and �⃗⃗� are the versors of 

the perpendicular axes of the system, and 

therefore, they are unit-vectors. We deduce 

that the point 𝑝 is also vectorial in nature. 

A plane or a geometric body 𝐺 can in turn 

be represented in the coordinate system as 

a set of points: 

𝐺 = {𝑝1, 𝑝2, … , 𝑝𝑛} 

By itself, this method of reducing 

the geometry of an object to a set of 

numerical values is of limited use. 

Practical scenarios include not only 

structures, but also processes, and the need 

to find a mathematical representation and, 

implicitly, a method of memorizing these 

processes is just as important. From a 

geometric point of view, the notion of 

“process” is synonymous with that of 

“transformation”, implying the 

determination of a final state from the 

definition of an initial state. The difficulty, 

then, resides in finding a reliable 

mathematical model for representing basic 

geometric transformations – an algebra of 

transformations, in other words. This 

model is expected to satisfy the following: 

1. The existence of a domain that all the 

basic transformations are defined for, 

regardless of their type 

2. The existence of operators that allow 

for sequential and cumulative 

application of transformations 

The usage of matrix algebra is a 

remarkable solution to this problem, given 

that for any vector �⃗�, it can be represented 

as a column-matrix and, as a consequence, 

is compatible with matrix operations. 

𝑝 = 𝑥𝑖 + 𝑦𝑗 + 𝑧�⃗⃗� 

≝

{
 
 

 
 
[

𝑥
𝑦
𝑧
1

] (homogenous coordinates)

[
𝑥
𝑦
𝑧
] (Euclidean coordinates)

 

Remark: The three-dimensional 

vector is often written as a column-matrix 

containing four homogeneous coordinates. 

Homogeneous coordinates have the 

following property that relates them to the 

Euclidean coordinate system: 

∀𝑤 ∈ ℝ⟹ [
𝑥
𝑦
𝑧
] = [

𝑤𝑥
𝑤𝑦
𝑤𝑧
𝑤

] = [

𝑥
𝑦
𝑧
1

] 
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The homogeneous coordinates 

representation implies that matrix 

operations between the vector �⃗�  and 

transformation matrices belonging to 

𝑀4×4(ℝ) are possible. 

1 The Transformation Matrix 

1.1 Definition 

In the context of three-dimensional 

geometry, transformation matrices belong 

to 𝑀4×4(ℝ) or 𝑀3×3(ℝ), depending on the 

coordinate system in which calculations 

are performed. The application of a 

transformation on a point 𝑝  in order to 

obtain the transformed point 𝑝′ is done by 

simply multiplying to the left with the 

transformation matrix 𝐴. 

𝑝′ = 𝐴 ⋅ 𝑝 

Remark: Matrices belonging to 

𝑀4×4(ℝ) differ from those in 𝑀3×3(ℝ) in 

that they are able to represent 

transformations without fixed points. 

Proof: We assume that 𝑝 is the 

origin of the coordinate system, then: 

𝑝 = 0⃗⃗ = [
0
0
0
] ⟹ 

∀𝐴 ∈ 𝑀3×3(ℝ)  𝐴 ⋅ 𝑝 = [
0
0
0
] = 𝑝 

Therefore, ∄𝐴 ∈ 𝑀3×3(ℝ)  such 

that 𝐴 ⋅ 𝑝 ≠ 𝑝 when 𝑝 = 0⃗⃗. 

In this case there is at least one 

fixed point regardless of the 

transformation, and that is the origin. 

The rest of this document will use 

the notation in homogeneous coordinates, 

making it possible to represent the 

matrices of many types of transformations 

that do not have fixed points [1]. 

1.2 Types of Transformations 

1.2.1 Scaling 

Given the set of points 𝐺 =
{𝑝1, 𝑝2, … , 𝑝𝑛} that defines the geometry of 

an object, we are required to determine the 

transformation matrix 𝐴  that “enlarges” 

the object on one or more axes: 

∀𝑝 ∈ 𝐺 ⟺ 𝑝 = [

𝑥
𝑦
𝑧
1

] 

𝐴 ⋅ 𝑝 = [

𝛼𝑥
𝛽𝑦
𝛾𝑧
1

]  where 𝛼, 𝛽, 𝛾 ≠ 1 

We determine the general form of 

the transformation matrix by using the 

analytical method: 

𝐴 ⋅ 𝑝 = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
0 0 0 1

] [

𝑥
𝑦
𝑧
1

] 

= [

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34

1

] 

= [

𝛼𝑥
𝛽𝑦
𝛾𝑧
1

] 

Which gives us: 

𝐴 = [

𝛼 0 0 0
0 𝛽 0 0
0 0 𝛾 0
0 0 0 1

] 

We will proceed similarly for the 

rest of the usual transformations. 

1.2.2 Rotation 

Given the set of points 𝐺 =
{𝑝1, 𝑝2, … , 𝑝𝑛} that defines the geometry of 

an object, we are required to determine 

three transformation matrices marked as 

𝐴𝑂𝑥 , 𝐴𝑂𝑦  and 𝐴𝑂𝑧  that “rotate” the object 

counter clockwise about the 𝑂𝑥 , 𝑂𝑦  and 

𝑂𝑧  axes of the coordinate system, 
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respectively. Let us first try to determine 

the general form of the transformation 

matrix 𝐴𝑂𝑧. 

It is known that a rotation about the 

axis 𝑂𝑧: 

1. Will not affect the 𝑧  coordinate of 

point 𝑝. 

2. Will be equivalent to a rotation around 

the origin, in the plane defined by the 

axes 𝑂𝑥 and 𝑂𝑦. 

Consequently, the transformation 

matrix will be of the form: 

𝐴𝑂𝑧 ⋅ 𝑝 = 

[

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34

1

] = [

𝑥′

𝑦′

𝑧
1

] 

(1) 

Regarding rotation in the 𝑂𝑥 -𝑂𝑦 

plane, the notion of “angle” is determined 

counter clockwise, relative to the 𝑂𝑥 axis. 

It is required that we determine the relation 

that describes the variation of the 𝑥 and 𝑦 

coordinates of point 𝑝 following a rotation 

of 𝜃1 radians starting from an initial angle 

𝜃0 , relative to the 𝑂𝑥 axis. We know the 

following: 

|�⃗�| = √𝑥2 + 𝑦2 

𝜃0 = sin
−1

𝑦

|�⃗�|
= cos−1

𝑥

|𝑝|
 

(𝑥, 𝑦) = (|�⃗�| cos 𝜃0 , |�⃗�| sin 𝜃0) 

Thus: 

𝑥′ = |�⃗�| cos(𝜃0 + 𝜃1) 

= |�⃗�|(cos𝜃0 cos 𝜃1 − sin 𝜃0 sin 𝜃1) 

= |�⃗�| (cos (cos−1
𝑥

|�⃗�|
) cos 𝜃1

− sin (sin−1
𝑦

|�⃗�|
) sin 𝜃1) 

= 𝑥 cos 𝜃1 + 𝑦 sin 𝜃1 
(2) 

In the same manner, we get: 

𝑦′ = 𝑦 cos 𝜃1 + 𝑥 sin 𝜃1 
(3) 

Relations (1), (2) and (3) imply 

that: 

𝐴𝑂𝑧 ⋅ 𝑝 = [

𝑥′

𝑦′

𝑧
1

] 

= [

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34

1

] 

= [

𝑥 cos 𝜃1 + 𝑦 sin 𝜃1
𝑦 cos 𝜃1 + 𝑥 sin 𝜃1

𝑧
1

] 

Lastly: 

𝐴𝑂𝑧 = [

cos 𝜃1 −sin 𝜃1 0 0
sin 𝜃1 cos 𝜃1 0 0
0 0 1 0
0 0 0 1

] 

The general forms of 𝐴𝑂𝑥 and 𝐴𝑂𝑦 

are similarly determined as: 

𝐴𝑂𝑥 = [

1 0 0 0
0 cos 𝜃1 −sin 𝜃1 0
0 sin 𝜃1 cos 𝜃1 0
0 0 0 1

] 

𝐴𝑂𝑦 = [

cos 𝜃1 0 sin 𝜃1 0
0 1 0 0

− sin 𝜃1 0 cos 𝜃1 0
0 0 0 1

] 

1.2.3 Translation 

Given the set of points 𝐺 =
{𝑝1, 𝑝2, … , 𝑝𝑛} that defines the geometry of 

an object, we are required to determine the 

transformation matrix 𝐴 that “moves” the 

object along one or more axes: 

∀𝑝 ∈ 𝐺 ⟺ 𝑝 = [

𝑥
𝑦
𝑧
1

] 

𝐴 ⋅ 𝑝 = [

𝑥 + 𝛼
𝑦 + 𝛽
𝑧 + 𝛾
1

]  where 𝛼, 𝛽, 𝛾 ≠ 0 
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Thus: 

𝐴 ⋅ 𝑝 = [

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34

1

] 

= [

𝑥 + 𝛼
𝑦 + 𝛽
𝑧 + 𝛾
1

] 

Which leads to: 

𝐴 = [

1 0 0 𝛼
0 1 0 𝛽
0 0 1 𝛾
0 0 0 1

] 

Remark: Since the translation 

transformation has no fixed points, it can 

only be performed using a 𝐴 ∈ 𝑀4×4(ℝ) 
matrix. 

Proof: For such a transformation to 

exist, it is necessary that: 

𝛼, 𝛽, 𝛾 ≠ 0 
(4) 

We assume that such a fixed point 

exists: 

𝐴 ⋅ 𝑝 = 𝑝 ⟺ [

𝑥 + 𝛼
𝑦 + 𝛽
𝑧 + 𝛾
1

] = [

𝑥
𝑦
𝑧
1

] ⟺ 

(𝛼, 𝛽, 𝛾) = (0,0,0) 
(5) 

Relations (4) and (5) result in a 

contradiction, therefore, our assumption 

can only be false. 

1.2.5 Perspective Projection 

An intricate but remarkably useful 

transformation is the perspective 

projection of a volume of space on a plane. 

This mathematical operation is the basis of 

the process by which a computer can use a 

two-dimensional screen to display the 

image of a three-dimensional geometric 

body stored in memory [2]. The 

perspective of the projection is defined by 

two known planes, 𝛼  and 𝛽 , aligned 

concentrically and perpendicular to the 𝑂𝑧 

axis according to the example in Figure 1: 

Figure 1: Perspective Frustum 

 

Figure 2: Cross-Section of the Frustum on the Ox-Oz 
Plane 

 

Given the set of points 𝐺 =
{𝑝1, 𝑝2, … , 𝑝𝑛} that defines the geometry of 

an object, we are required to determine the 

transformation matrix 𝐴 that “projects” the 

object on the 𝛼 plane, thus reducing it to a 

set of bidimensional points. 

𝐴 ⋅ 𝑝 = [

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34

1

] 

= [

𝑥′

𝑦′

𝑧𝛼  
1

] 

(6) 

Where 𝑧𝛼  is a known constant, 

characteristic to plane 𝛼. 

An example of this operation, 

limited to two dimensions, can be seen in 

Figure 2. We will determine the 

transformation matrix using this example.  
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We know the following: 

𝑝 = (𝑧, 𝑥) 

𝑝′ = (𝑧𝛼, 𝑥
′) 

𝑧𝑂�̂� = 𝑧𝑂𝑝′̂ = 𝜃 ⟺ 

tan 𝑧𝑂�̂� = tan 𝑧𝑂𝑝′̂ ⟺ 

𝑥

𝑧
=
𝑥′

𝑧𝛼
 

Therefore: 

𝑥′ = 𝑥
𝑧𝛼
𝑧

 

(7) 

Similarly: 

𝑦′ = 𝑦
𝑧𝛼
𝑧

 

(8) 

Relations (6), (7) and (8) imply: 

[

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34

1

] =

[
 
 
 
 𝑥
𝑧𝛼
𝑧

𝑦
𝑧𝛼
𝑧

𝑧𝛼  
1 ]
 
 
 
 

 

However, we notice that: 

∄(𝑎11, 𝑎12, 𝑎13, 𝑎14) ∈ ℝ  𝑠. 𝑡. 

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14 = 𝑥
𝑧𝛼
𝑧

 

∀𝑥, 𝑦, 𝑧 ∈ ℝ 

This suggests that the matrix 𝐴 

cannot be written as above, this problem is 

solved by the fundamental property of 

homogeneous coordinates [3]: 

[

𝑥
𝑦
𝑧
1

] = [

𝑤𝑥
𝑤𝑦
𝑤𝑧
𝑤

] ⟺ 𝑝′ =

[
 
 
 
 𝑥
𝑧𝛼
𝑧

𝑦
𝑧𝛼
𝑧

𝑧𝛼 
1 ]
 
 
 
 

= [

𝑥𝑧𝛼
𝑦𝑧𝛼
𝑧𝑧𝛼 
𝑧

] 

Consequently, the general form of 

𝐴 can be determined using the analytical 

method: 

𝐴 ⋅ 𝑝 = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

] [

𝑥
𝑦
𝑧
1

] 

= [

𝑥𝑧𝛼
𝑦𝑧𝛼
𝑧𝑧𝛼 
𝑧

] ⟺ 

𝐴 = [

𝑧𝛼 0 0 0
0 𝑧𝛼 0 0
0 0 𝑧𝛼 0
0 0 1 0

] 

1.3 Usage 

Given the transformation matrices 

𝐴, 𝐵, 𝐶 ∈ 𝑀4×4(ℝ)  and point 𝑝 , because 

matrix multiplication is associative, the 

following is true: 

𝐶 ⋅ (𝐵 ⋅ (𝐴 ⋅ 𝑝)) = (𝐶 ⋅ 𝐵 ⋅ 𝐴) ⋅ 𝑝 

Axiom: Applying a transformation 

defined by a product of transformation 

matrices is equivalent to the right-to-left 

successive application of all 

transformations of the matrices involved in 

the product [4]. 

2 The Quaternion 

2.1 Definition 

The following is the set of 

Hamiltonian numbers, also known as 

quaternions: 

ℍ = {𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} 

where 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 

In other words, a quaternion is a 

four-dimensional number. Given the 

fundamental property of the imaginary 

numbers 𝑖 , 𝑗  and 𝑘 , the following tabular 

description of all possible products can be 

derived: 

⋅ 1 𝑖 𝑗 𝑘 

1 1 𝑖 𝑗 𝑘 

𝑖 𝑖 −1 𝑘 −𝑗 

𝑗 𝑗 −𝑘 −1 𝑖 

𝑘 𝑘 𝑗 −𝑖 −1 
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Using the table above as a 

reference, quaternion calculations are 

performed according to the same laws of 

operation with real numbers. 

By definition, the real and 

imaginary components of a quaternion 𝑞 

are: 

Re(𝑞) = 𝑎 

Im(𝑞) = 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 

The conjugate of a quaternion 𝑞 is 

written as 𝑞∗  and satisfies the following 

property: 

∀𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 

∃𝑞∗ = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘 

Which implies: 

𝑞 + 𝑞∗

2
= Re(𝑞) 

The conjugate can be used for 

calculating the norm |𝑞| of a quaternion: 

|𝑞| = √𝑞𝑞∗ = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 

Quaternions with norm |𝑞| = 1 , 

also known as unit-vectors, are particularly 

useful, they can be used to define 

directions in three-dimensional space. 

2.2 Usage 

To demonstrate the immediate 

utility of quaternions, the following 

analogy of one of the properties of 

complex numbers is proposed in Figure 3. 

Figure 3: Rotation of Complex Numbers Through 

Multiplication 

 
Axiom: Let: 

𝑝, 𝑞 ∈ ℂ  𝑠. 𝑡.  |𝑞| = 1;  𝑝𝑞 = 𝑝′ 

Then: 

|𝑝′| = |𝑝| 

𝜃𝑝′ = 𝜃𝑝 + 𝜃𝑞 ⟺ 

tan−1
Im(𝑝′)

Re(𝑝′)
= 

= tan−1
Im(𝑝)

Re(𝑝)
+ tan−1

Im(𝑞)

Re(𝑞)
 

Where 𝜃𝑧  is the angle of the 

complex number 𝑧. 

A complex number can be 

“rotated” in the plane of complex numbers 

by multiplying by another complex 

number of unitary magnitude. In general, 

when two complex numbers are 

multiplied, their magnitudes multiply and 

their angles add up. 

Proof: Let 𝑝, 𝑞 ∈ ℂ where (𝑝, 𝑞) =
(𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖) then: 

𝜃𝑝 = tan
−1
𝑏

𝑎
 

𝜃𝑞 = tan
−1
𝑑

𝑐
 

|𝑝| = √𝑎2 + 𝑏2 

|𝑞| = √𝑐2 + 𝑑2  

𝑝𝑞 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) 

= 𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐) 
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Consequently: 

|𝑝𝑞| = √(𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2 

= √(𝑎𝑐)2 − 2𝑎𝑏𝑐𝑑 + (𝑏𝑑)2 + (𝑎𝑑)2 + 2𝑎𝑏𝑐𝑑 + (𝑏𝑐)2 
(9) 

|𝑝||𝑞| = √(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) 

= √(𝑎𝑐)2 + (𝑏𝑑)2 + (𝑎𝑑)2 + (𝑏𝑐)2 
(10) 

𝜃𝑝𝑞 = tan−1
𝑎𝑑 + 𝑏𝑐

𝑎𝑐 − 𝑏𝑑
 

(11) 

𝜃𝑝 + 𝜃𝑞 = tan−1
𝑏

𝑎
+ tan−1

𝑑

𝑐
 

= tan−1
𝑏
𝑎 +

𝑑
𝑐

1 −
𝑏𝑑
𝑎𝑐

 

= tan−1
𝑎𝑑 + 𝑏𝑐

𝑎𝑐 − 𝑏𝑑
 

(12) 

Relations (9) and (10) imply 
|𝑝𝑞| = |𝑝||𝑞|, while (11) and (12) imply 

𝜃𝑝𝑞 = 𝜃𝑝 + 𝜃𝑞, QED. 

Quaternions behave similarly, but 

on a different level. The following 

relationship captures this aspect: 

ℝ ⊂ ℂ ⊂ ℍ 

Similar to how the entire axis of 

real numbers is included in ℂ, the entire 

domain of three-dimensional vectors is 

included in ℍ . A purely imaginary 

quaternion is nothing but such a vector. 

Given the set of points 𝐺 = {𝑝1, 𝑝2, … , 𝑝𝑛} 
that defines the geometry of an object, 

then: 

∀𝑝 ∈ 𝐺  𝑝 = [
𝑥
𝑦
𝑧
] = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 ∈ ℍ 

Moreover, the fundamental 

property of the imaginary numbers 𝑖, 𝑗 and 

𝑘  implies that the rotation of a three-

dimensional point 𝑝 by 𝜃 radians about an 

axis defined by the three-dimensional unit 

vector 𝛼 with the purpose of obtaining the 

transformed point 𝑝′  is equivalent to the 

following operation [5]: 

𝑝′ = 𝑞𝑝𝑞∗ | 𝑞 = cos
𝜃

2
+ 𝛼 sin

𝜃

2
 

This method of rotating three-

dimensional points is more efficient and 

less prone to error than the use of 

transformation matrices. Suppose we 

intend to perform the same rotation around 

some axis 𝛼  using only transformation 

matrices: 

Because we only know the general 

forms of matrices for the rotational 

transformations around the three axes 𝑂𝑥, 

𝑂𝑦 and 𝑂𝑧, we are required to determine 

what product of rotations around the three 

known axes is equivalent to the desired 

rotation of 𝜃 radians about the axis 𝛼: 

𝑝′ = (𝐴𝑂𝑥 ⋅ 𝐴𝑂𝑦 ⋅ 𝐴𝑂𝑧)𝑝 

Therefore, two problems arise: 

1. Determining the three transformation 

matrices can prove difficult 

2. Once the matrices have been 

determined, the sequence of their 

application must also be memorized 

because the multiplication of matrices 

is not commutative: 

(𝐴𝑂𝑥 ⋅ 𝐴𝑂𝑦 ⋅ 𝐴𝑂𝑧)𝑝 ≠ (𝐴𝑂𝑥 ⋅ 𝐴𝑂𝑧 ⋅ 𝐴𝑂𝑦)𝑝 

As such, it is recommended to 

establish a convention regarding the order 

in which rotational transformations are 

applied. 
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II. Technical Implementation 

3 Schematic Description of the System 

The system in question is a 

portable computing platform, focused on 

(but not limited to) the generation and 

manipulation of a video stream projected 

on the retina. The main use case of this 

system is of a computer-assisted pilot 

helmet. The working principle involves the 

usage of computational resources and an 

integrated video camera assembly to 

replace the pilot's eyesight with a pre-

processed video stream. The following are 

the system's requirements: 

1. Possibility for the wearer to use the 

video stream in a way that is as faithful 

as possible to normal eyesight 

2. Introduction of an advantage over 

normal eyesight through specific 

functions of the camera assembly, 

functions such as: infrared spectrum 

view, self-illumination, image 

magnification, etc. 

3. Integration of a wide array of 

communication interfaces to external 

equipment used by the pilot 

4. Possibility of full manipulation of the 

video stream for purposes such as: 

display of pilot data in the field of 

view, display of text-based 

telecommunications, selective 

highlighting of silhouettes, recognition 

and marking of objects in the field of 

view, etc. 

5. Use of the helmet's sensor assembly in 

determining the spatial orientation of 

the pilot for rendering indicators such 

as: artificial horizon, digital compass, 

elevation measurements, etc. 

6. Connection to the wide area network 

(WAN) 

7. Ability to run for at least 2 hours in the 

absence of a power source 

Figure 4: Software Components 
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Figure 5: Hardware Components 

 

4 Usage of Mathematical Concepts 

4.1 The Transformation Matrix 

Once the video stream is generated 

by the optical sensor assembly and pre-

processed by the computer, it must be 

projected through the helmet's lens to the 

pilot's retina. This is done by rendering a 

virtual screen that displays this stream in 

front of the pilot. Figure 6 contains a 

sample of the code that drives the graphics 

chip to multiply a transformation matrix 

with each of the points that describe the 

geometry of the aforementioned virtual 

screen. 

Figure 6: GLSL Source Code 

uniform mat4 VP; 

attribute vec2 vPos; 

attribute vec2 vTex; 

varying vec2 v_UV; 

void main() 

{ 

 v_UV = vTex; 

 gl_Position = VP * vec4(vPos.x, vPos.y, -1.0, 1.0); 

} 

A matrix belonging to 𝑀4×4(ℝ) is 

stored inside the variable “VP”. The 

function “vec4(x, y, z, w)” only uses 

the necessary coordinates of the vector 

“vPos” for deducing the point on which 

the transformation described by the 

contents of “VP” will be applied. The result 

of left multiplying the point with the 

transformation matrix is stored in 

“gl_Position”, this value represents the 

transformed point. 

4.2 The Quaternion 

Each reading from the helmet's 

orientation sensors consists of three of the 

coordinates of a unit-quaternion that 

describes the pilot's spatial orientation at 

the time of reading. For all unit-

quaternions the following relation is true: 

|𝑞| = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1 

Consequently, the fourth 

coordinate of the quaternion must not be 

transmitted and can be deduced. Figure 7 
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contains a sample of the code used by the 

computer to render the artificial horizon 

indicators over the pilot's field of view. 

Relevant comments have been inserted 

into the code. 

Figure 7: C++ Source Code 

//STEP 1: Read essential unit-quaternion components and  

initialise heading vectors 

for(short i=0; i<3; i++) 

{ 

 cin >> quatraw[i]; 

 fwdupright[i].set(initraw+i*3); 

} 

 

//STEP 2: Deduce unessential component 

quatraw[3] = sqrt(1 - quatraw[0]*quatraw[0] -  

quatraw[1]*quatraw[1] - quatraw[2]*quatraw[2]); 

 

//STEP 3: Assemble quaternion 

quat.set(quatraw[0], quatraw[1], quatraw[2], quatraw[3]); 

 

//STEP 4: Apply quaternion rotation to heading vectors and  

optionally plot them or just print results 

for(short i=0; i<3; i++) 

{ 

 fwdupright[i] = quat * fwdupright[i]; 

 *(xcoords[i]) = (fwdupright[i].getData())[0]; 

 *(ycoords[i]) = (fwdupright[i].getData())[1]; 

 *(zcoords[i]) = (fwdupright[i].getData())[2]; 

} 

III. Final Results 

Figure 8 contains the QR code of 

the hrihelm.iso SD card image. The 

system contains a large number of changes 

to the Raspbian Linux distribution. For this 

reason, the software is distributed as an 

entire system image, instead of an 

installable package. An SD card with a 

capacity of at least 32GB is required for 

full image transcription. Transcription on 

the system's SD card #0 can be done 

through the corresponding command 

sequence. 

Figure 8: QR Code of the SD Card Image 

 

unxz hrihelm.iso.xz; 

dd if=hrihelm.iso \ 

of=/dev/mmcblk0 

Notice: The password of the main 

user of the system is: 91142067 

Notice: In its current state, the 

system automatically connects to the 

hotspot network of the author's 

smartphone. Consequently, when another 

smartphone is used as part of the helmet, 

the system must be configured 

accordingly. 

Figure 9: QR Code of the Android Retinal Interface 

App 

 

Figure 10: QR Code of the Demo Footage 
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Figure 9 contains the QR code of 

the Android Studio project that 

implements the retinal interface of the 

system. Read Figure 4 for details on how 

the interface is integrated into the system. 

The system start-up procedure, 

followed by the use of certain functions is 

exemplified in the footage identified by the 

QR code in Figure 10. 

5 Testing 

Figure 11: Helmet and Body-Mounted Assembly 

 

 

Figure 12: Helmet's Profile, HDMI Capture Chip 

Visible 

 

Figure 13: Looking at a Mirror 

 

Figure 14: Tracking a Small-Sized Animal 

 

Figure 15: Selective Highlighting of Silhouettes 
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Abstract - This paper contains a series of 

demonstrations of the mathematical principles 

underlying analog signal processing. It offers a 

definition of the Fourier transform, its application 

on discrete values and its interpretation in the form 

of an algorithm of minimal complexity. The paper 

exemplifies the above concepts in designing a 

protocol for data transfer through audio signals. 

Index Terms: spectrum analysis, communications 

protocol, signal processing, analog, computer 

terminal, audio 

I. Mathematical Definition 

An analog signal can be defined as 

a value that belongs to an interval of real 

numbers. If there is a relation between the 

signal's value and another parameter, it can 

be modelled as a mathematical function. 

The set of time-dependent analog signals 

can be defined as follows: 

𝐴 = {𝑓(𝑡) | 𝑓: ℝ → ℝ} 

For practical reasons, analog 

signals take on values that belong to finite 

intervals, a consequence of which is that 

periodicity is a common feature of all 

signals defined on infinite intervals. 

Therefore, the following would be a more 

precise definition: 

𝐴 = {𝑓(𝑡) | 𝑓: ℝ → (𝑎, 𝑏);  𝑓(𝑡) = 𝑓(𝑡 + 𝑘);  𝑎, 𝑏, 𝑘 ∈  ℝ} 

The function 𝑓(𝑡) = cos(𝑡)  is considered 

to be the simplest function belonging to 

the set 𝐴 because, according to the Fourier 

theorem [1], any periodic function can be 

written as a sum of 𝑛 ∈ ℕ cosine functions 

of different amplitudes, frequencies and 

phase shifts, as shown in (1). Throughout 

this paper, all terms of the sum (1) will be 

referred to as “basic analog signals”. The 

set of basic analog signals takes on the 

form (2). 

∀𝑓 ∈ 𝐴, ∃(𝑎𝑘, 𝜃𝑘) ∈ ℝ × ℝ, 𝜈𝑘 ∈ ℝ | 𝑘 ∈ {0,1, … , 𝑛 − 1} 𝑠. 𝑡. 

𝑓(𝑡) = ∑𝑎𝑘 cos(2𝜋𝜈𝑘𝑡 + 𝜃𝑘)

𝑛−1

𝑘=0

  

(1) 

𝐸 = {𝑔(𝑡) = 𝑎 cos(2𝜋𝜈𝑡 + 𝜃) | 𝑔: ℝ → [−1,1]; 𝑎, 𝜈, 𝜃 ∈ ℝ} 
(2) 

1 The Fourier Transform 

Given the analog signal 𝑓 ∈ 𝐴 

which contains the basic analog signal 𝑔 ∈
𝐸 , where 𝜈𝑔 ∈ ℝ

+  is the only known 

parameter of signal 𝑔, we are required to 

determine its other defining parameters 

(𝑎𝑔, 𝜃𝑔).  

The solution to this problem can be 

determined using the Fourier transform of 

the signal 𝑓 for the frequency 𝜈𝑔 , marked 

as 𝑓(𝜈𝑔) . In order to understand the 

mathematical principles behind this 

transform, we will use the alternative 

definition (8) of basic analog signals.  
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1.1 Euler’s Formula 

The following identity is given: 

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) ∀𝑥 ∈ ℝ 
(3) 

Proof: 

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) ⟺ 

𝑖𝑥 = ln(cos(𝑥) + 𝑖 sin(𝑥))  
(4) 

Two functions are considered, 

𝑓, 𝑔:ℝ → ℂ , representing the left-hand 

side and the right-hand side of (4): 

𝑓(𝑥) = 𝑖𝑥; 𝑔(𝑥) = ln(cos(𝑥) + 𝑖 sin(𝑥)) 

Two functions are equal if they 

differ by a constant value and that constant 

is null: 

𝑓(𝑥) = 𝑔(𝑥) ⟺ {
𝑓(𝑥) = 𝑔(𝑥) + 𝑘

𝑘 = 0
 

(5) 

𝑓′(𝑥) = 𝑔′(𝑥) ⟺
𝑖 cos(𝑥) − sin(𝑥)

cos(𝑥) + 𝑖 sin(𝑥)
= 𝑖 

⟺
cos(𝑥) + 𝑖 sin(𝑥)

cos(𝑥) + 𝑖 sin(𝑥)
= 1 

(6) 
𝑓(0) = 𝑔(0) 

(7) 
Relations (5), (6) and (7) imply (3), 

QED.

1.2 The Representation of an Analog 

Signal 

Given (2), we deduce that the basic 

analog signal can be defined as:

 

cos(𝑥) =
[cos(𝑥) + 𝑖 sin(𝑥)] + [cos(𝑥) − 𝑖 sin(𝑥)]

2
=
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
 

(8) 
Let (1) and (8) be known, then: 

∀𝑔 ∈ 𝐸 

𝑔(𝑡) =
𝑎

2
(𝑒𝑖2𝜋𝜈𝑡+𝑖𝜃 + 𝑒−𝑖2𝜋𝜈𝑡−𝑖𝜃) 

(9) 

 

∀𝑓 ∈ 𝐴 

𝑓(𝑡) = ∑𝑔𝑘(𝑡)

𝑛−1

𝑘=0

 

=
1

2
∑𝑎𝑘(𝑒

𝑖2𝜋𝜈𝑘𝑡+𝑖𝜃𝑘 + 𝑒−𝑖2𝜋𝜈𝑘𝑡−𝑖𝜃𝑘)

𝑛−1

𝑘=0

 

(10) 

1.3 Operations on Analog Signals 

Given the signal 𝑓 ∈ 𝐴 and identity 

(10), the following are true: 

𝑓(𝑡)𝑒−𝑖2𝜋𝜈𝑡 = [
1

2
∑𝑎𝑘(𝑒

𝑖2𝜋𝜈𝑘𝑡+𝑖𝜃𝑘 + 𝑒−𝑖2𝜋𝜈𝑘𝑡−𝑖𝜃𝑘)

𝑛−1

𝑘=0

] 𝑒−𝑖2𝜋𝜈𝑡 

=
1

2
∑𝑎𝑘

𝑛−1

𝑘=0

(𝑒𝑖2𝜋𝜈𝑘𝑡+𝑖𝜃𝑘 ⋅ 𝑒−𝑖2𝜋𝜈𝑡 + 𝑒−𝑖2𝜋𝜈𝑘𝑡−𝑖𝜃𝑘 ⋅ 𝑒−𝑖2𝜋𝜈𝑡) 

=
1

2
∑𝑎𝑘

𝑛−1

𝑘=0

(𝑒𝑖2𝜋(𝜈𝑘−𝜈)𝑡+𝑖𝜃𝑘 + 𝑒−𝑖2𝜋(𝜈𝑘+𝜈)𝑡−𝑖𝜃𝑘) 

(11) 
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At the same time: 

𝑒𝑖2𝜋𝜈𝑡+𝑖𝜃 = {
cos(2𝜋𝜈𝑡 + 𝜃) + 𝑖 sin(2𝜋𝜈𝑡 + 𝜃) 𝜈 ≠ 0
cos(𝜃) + 𝑖 sin(𝜃)  𝜈 = 0

 

(12) 

∫ cos(𝑡)𝑑𝑡
∞

−∞

= ∫ sin(𝑡)𝑑𝑡
∞

−∞

= 0 

(13) 

See Figure 1 for details regarding (13). 

Figure 1: Integration of a Sine Wave Over an Infinite Interval 

 

Remark: The periodicity of the 

function and the integration on the infinite 

interval guarantee that, for 𝑘 ∈ ℝ , the 

following are true: 

∀𝐼 = ∫ cos(𝑥) 𝑑𝑥
2(𝑘+1)𝜋

2𝑘𝜋

, 

∃𝐼′ = ∫ cos(𝑥) 𝑑𝑥
2(𝑘+2)𝜋

2(𝑘+1)𝜋

 𝑠. 𝑡. 

𝐼 + 𝐼′ = 0 
(14) 

Relations (12) and (13) imply that: 

∫ 𝑒𝑖2𝜋𝜈𝑡+𝑖𝜃𝑑𝑡

∞

−∞

= 

= {
0 𝜈 ≠ 0
(cos 𝜃 + 𝑖 sin 𝜃) ⋅ ∞ 𝜈 = 0

 

(15) 

Therefore, by integrating relation (11), we get: 

∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡

∞

−∞

= ∫
1

2
∑𝑎𝑘

𝑛−1

𝑘=0

(𝑒𝑖2𝜋(𝜈𝑘−𝜈)𝑡+𝑖𝜃𝑘 + 𝑒−𝑖2𝜋(𝜈𝑘+𝜈)𝑡−𝑖𝜃𝑘)

∞

−∞

 

=
1

2
∑𝑎𝑘

𝑛−1

𝑘=0

( ∫ 𝑒𝑖2𝜋(𝜈𝑘−𝜈)𝑡+𝑖𝜃𝑘𝑑𝑡

∞

−∞

+ ∫ 𝑒−𝑖2𝜋(𝜈𝑘+𝜈)𝑡−𝑖𝜃𝑘𝑑𝑡

∞

−∞

) 

Where: 𝜈, 𝜈𝑘 ∈ ℝ
+, 𝑘 ∈ {0,1, … , 𝑛 − 1 } 𝑠. 𝑡.  

{
𝜈𝑘 − 𝜈 = 0 𝜈𝑘 = 𝜈

𝜈𝑘 + 𝜈 ≠ 0 ∀𝜈𝑘, 𝜈 ∈ ℝ
+  
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Consequently, the function 

resulting from the integration is one of the 

forms of the Fourier transform:

 

𝑓(𝜈) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡

∞

−∞

= {
0 ∄𝑘 ∈ {0,1, … , 𝑛 − 1}  𝑠. 𝑡.  𝜈𝑘 = 𝜈

𝑎𝑘
2
(cos 𝜃𝑘 + 𝑖 sin 𝜃𝑘) ⋅ ∞ ∃𝑘 ∈ {0,1, … , 𝑛 − 1}  𝑠. 𝑡.  𝜈𝑘 = 𝜈

 

(16) 

This function takes on the value ∞ 

only in cases where the test frequency, 𝜈, 

is equal to any of the frequencies of the 

basic analog signals that are part of the 

signal 𝑓. 

2 The Discrete Fourier Transform 

(DFT) 

Form (16) of the Fourier transform 

can be restricted to a finite integration 

interval (𝑎, 𝑏) with 𝑎, 𝑏 ∈ ℝ and rewritten 

as a Riemann sum as follows: 

𝑓(𝜈) = ∫𝑓(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡

𝑏

𝑎

= lim
𝑛→∞

∑𝑓(𝑎 + 𝑘
𝑏 − 𝑎

𝑛
) 𝑒−𝑖2𝜋𝜈(𝑎+𝑘

𝑏−𝑎
𝑛
) 𝑏 − 𝑎

𝑛

𝑛−1

𝑘=0

 

Given the periodicity of the signal, 

integrating on the time interval (0, 𝜆), 𝜆 ∈
ℝ, will be considered, in order to simplify 

the expression: 

𝑓(𝜈) = ∫𝑓(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡

𝜆

0

 

= lim
𝑛→∞

∑𝑓(
𝑘𝜆

𝑛
) 𝑒−𝑖2𝜋𝜈

𝑘𝜆
𝑛
𝜆

𝑛

𝑛−1

𝑘=0

 

(17) 

Remark: Unlike (13), the 

integration of a basic analog signal over a 

finite interval introduces errors, as (14) 

does not apply to finite intervals: 

∫ cos(𝑡) 𝑑𝑡
𝜆

0

∈ [−1,1] 

Under practical circumstances, the 

signal 𝑓  is represented by the array of 

measurements (𝑓𝑛)𝑛∈ℕ  that have been 

performed on it. Measuring a signal 

involves the usage of a sampling rate, 𝑅 ∈
ℕ∗ , expressed in measurements per 

second: 

𝑓𝑛 = 𝑓 (
𝑛

𝑅
) 

By substituting the analog signal 𝑓 

with the array of measurements (𝑓𝑛)𝑛∈ℕ in 

relation (17), while 𝜆 ∈ ℝ | 𝜆𝑅 ∈ ℕ∗ , the 

following expression is obtained, a form of 

the discrete Fourier transform: 

𝑓�̂�(𝜈) = ∑ 𝑓 (
𝑘𝜆

𝜆𝑅
)

𝜆𝑅−1

𝑘=0

𝑒−𝑖2𝜋𝜈
𝑘𝜆
𝜆𝑅

𝜆

𝜆𝑅
 

=
1

𝑅
∑ 𝑓𝑘𝑒

−𝑖2𝜋𝜈
𝑘
𝑅

𝜆𝑅−1

𝑘=0

 

Therefore: 

𝑓�̂�(𝜈) = {
Δ ∄𝑘 ∈ {0,1, … , 𝑛 − 1}  𝑠. 𝑡.  𝜈𝑘 = 𝜈

𝑎𝑘
2
(cos 𝜃𝑘 + 𝑖 sin 𝜃𝑘)𝜆 ∃𝑘 ∈ {0,1, … , 𝑛 − 1}  𝑠. 𝑡.  𝜈𝑘 = 𝜈

 

By normalizing this result, we get: 

𝑓�̂�(𝜈) =
2

𝜆𝑅
∑ 𝑓𝑘𝑒

−𝑖2𝜋𝜈
𝑘
𝑅

𝜆𝑅−1

𝑘=0

= {

2Δ

𝜆
∄𝑘 ∈ {0,1, … , 𝑛 − 1}  𝑠. 𝑡.  𝜈𝑘 = 𝜈

𝑎𝑘(cos 𝜃𝑘 + 𝑖 sin 𝜃𝑘) ∃𝑘 ∈ {0,1, … , 𝑛 − 1}  𝑠. 𝑡.  𝜈𝑘 = 𝜈
 

(18) 
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Figure 2: Usage of an Approximate Sum as a Practical Alternative to Integration 

By comparing the Fourier 

transform, 𝑓(𝜈) presented in (16), with its 

discrete form, 𝑓�̂�(𝜈) in (18), we note that 

rewriting the integral as an approximate 

sum on the finite interval (0, 𝜆) solves the 

problem of infinite values, instead 

introducing the error Δ , negligible when 

𝜆 → ∞. 

This function takes on values that 

satisfy the requirement stated at the 

beginning of this paper. Given the analog 

signal 𝑓 ∈ 𝐴  which contains the basic 

analog signal 𝑔 ∈ 𝐸, where 𝜈𝑔 ∈ ℝ
+ is the 

only known parameter of signal 𝑔 , the 

following are true: 

𝑎𝑔 = |𝑓�̂�(𝜈𝑔)| 

𝜃𝑔 = sin−1 (Im
𝑓�̂�(𝜈𝑔)

|𝑓�̂�(𝜈𝑔)|
) 

Where Im(𝑧)  is the imaginary 

component of the complex number 𝑧. 

Remark: Sampling a signal 

involves the existence of a frequency limit 

[2] for which the discrete Fourier 

transform is defined: 

𝑓�̂�(𝜈): [0,
𝑅

2
] → ℂ 

(19) 

2.1 The Polynomial Form 

The following is the general form 

of a polynomial of degree 𝑛  with 

coefficients 𝑎0,1,…,𝑛: 

𝑃(𝑥) = ∑𝑎𝑘𝑥
𝑘

𝑛

𝑘=0

 

Therefore, evaluating the discrete 

Fourier transform of signal 𝑓 , for the 

frequency 𝜈 , can be defined as a 

polynomial evaluation problem: 

𝑓�̂�(𝜈) = 𝑃(𝑥) ⟺ 

2

𝜆𝑅
∑ 𝑓𝑘𝑒

−𝑖2𝜋𝜈
𝑘
𝑅

𝜆𝑅−1

𝑘=0

=∑𝑎𝑘𝑥
𝑘

𝑛

𝑘=0

⟺ 

⟺

{
 

 
𝑛 = 𝜆𝑅 − 1

𝑎𝑘 =
2𝑓𝑘
𝜆𝑅

𝑥 = 𝑒−𝑖2𝜋𝜈
1
𝑅

 

(20) 

The complexity of evaluating a 

polynomial is 𝑂(𝑛).  
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2.2 The Matrix Form 

Identity (20) implies that the 

discrete Fourier transform of the signal 𝑓, 

for 𝑛 = 𝜆𝑅 frequencies, can be defined as 

the product of a square matrix and a 

column vector, as follows: 

[
 
 
 
 
 
𝑓�̂�(𝜈0)

𝑓�̂�(𝜈1)

𝑓�̂�(𝜈2)
⋮

𝑓�̂�(𝜈𝑛−1)]
 
 
 
 
 

=
2

𝑛

[
 
 
 
 
 
 𝑒

−𝑖2𝜋𝜈0
0
𝑅 𝑒−𝑖2𝜋𝜈0

1
𝑅 𝑒−𝑖2𝜋𝜈0

2
𝑅 ⋯ 𝑒−𝑖2𝜋𝜈0

𝑛−1
𝑅

𝑒−𝑖2𝜋𝜈1
0
𝑅 𝑒−𝑖2𝜋𝜈1

1
𝑅 𝑒−𝑖2𝜋𝜈1

2
𝑅 ⋯ 𝑒−𝑖2𝜋𝜈1

𝑛−1
𝑅

𝑒−𝑖2𝜋𝜈2
0
𝑅 𝑒−𝑖2𝜋𝜈2

1
𝑅 𝑒−𝑖2𝜋𝜈2

2
𝑅 ⋯ 𝑒−𝑖2𝜋𝜈2

𝑛−1
𝑅

⋮ ⋮ ⋮ ⋱ ⋮

𝑒−𝑖2𝜋𝜈𝑛−1
0
𝑅 𝑒−𝑖2𝜋𝜈𝑛−1

1
𝑅 𝑒−𝑖2𝜋𝜈𝑛−1

2
𝑅 ⋯ 𝑒−𝑖2𝜋𝜈𝑛−1

𝑛−1
𝑅 ]
 
 
 
 
 
 

[
 
 
 
 
𝑓0
𝑓1
𝑓2
⋮

𝑓𝑛−1]
 
 
 
 

 

(21) 

Remark: For arbitrarily chosen 

values of 𝜈𝑘 , ∀𝑘 ∈ {0,1, … , 𝑛 − 1} , the 

product evaluation has a complexity of 

𝑂(𝑛2). 

3 The Fast Fourier Transform (FFT) 

Certain properties of 𝜈𝑘 , ∀𝑘 ∈
{0,1, … , 𝑛 − 1}, chosen in relation (21) can 

reduce the complexity of the product 

evaluation to 𝑂(𝑛 log2 𝑛) . For this 

purpose, roots of unity will be used. 

3.1 Properties of the Roots of Unity 

The set of 𝑛 -th roots of unity is 

defined as follows: 

𝑅𝑛 = {𝑧 ∈ ℂ | 𝑧
𝑛 = 1;  𝑛 ∈ ℤ} 

= {𝑧 ∈ ℂ | 𝑧𝑛 = 𝑒𝑖2𝜋;  𝑛 ∈ ℤ} 
(22) 

Relations (3), (22) and the 

periodicity of trigonometric functions 

imply that: 

𝑅𝑛 = {𝑧 ∈ ℂ | 𝑧
𝑛 = 𝑒𝑖2𝜋𝑘;  𝑘, 𝑛 ∈ ℤ} 

= {𝑧 ∈ ℂ | 𝑧 = 𝑒𝑖2𝜋
𝑘
𝑛;  𝑘, 𝑛 ∈ ℤ} 

= {𝑒𝑖2𝜋
𝑘
𝑛 | 𝑘, 𝑛 ∈ ℤ} 

For 𝑛 = 2𝑚 ∀𝑚 ∈ ℕ∗ , (23) and 

(24) are true: 

∀𝑥 ∈ 𝑅𝑛  ∃𝑥
′ ∈ 𝑅𝑛 𝑠. 𝑡. 

𝑥 = −𝑥′ ⟺ 𝑥2 = 𝑥′2 
(23) 

Proof: 

−𝑒𝑖2𝜋
𝑘
𝑛 = −cos (2𝜋

𝑘

𝑛
) + 𝑖 sin (2𝜋

𝑘

𝑛
) 

= cos (2𝜋
𝑘

𝑛
+ 𝜋) + 𝑖 sin (2𝜋

𝑘

𝑛
+ 𝜋) 

= cos(2𝜋
𝑘 +

𝑛
2

𝑛
) + 𝑖 sin(2𝜋

𝑘 +
𝑛
2

𝑛
) 

= 𝑒𝑖2𝜋
𝑘+
𝑛
2

𝑛 ∈ 𝑅𝑛 

See Figure 3 that exemplifies 

relation (23) for 𝑛 = 16. 

∀𝑥 ∈ 𝑅2𝑚  𝑥
2ℎ ∈ 𝑅2𝑚−ℎ  | ℎ ∈ ℕ; ℎ < 𝑚 

(24) 

Proof: 

𝑥2
ℎ
= (𝑒𝑖2𝜋

𝑘
2𝑚)

2ℎ

= 𝑒𝑖2𝜋
𝑘⋅2ℎ

2𝑚  

= 𝑒
𝑖2𝜋

𝑘

2𝑚−ℎ ∈ 𝑅2𝑚−ℎ 
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Figure 3: The 𝑹𝟏𝟔  Set 

Relations (23) and (24) imply that 

the problem of evaluating a polynomial 

𝐴(𝑥)  of degree 2𝑚 − 1 , for points 𝑥 ∈

𝑅2𝑚  ∀𝑚 ∈ ℕ∗, is reduced to the recursive 

evaluation of two polynomials, 𝐴1(𝑥
2) and 

𝐴2(𝑥
2), where 𝑥2 ∈ 𝑅2𝑚−1, as such: 

𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎2𝑚−1𝑥

2𝑚−1 

= (𝑎0 + 𝑎2𝑥
2 +⋯+ 𝑎2𝑚−2𝑥

2𝑚−2) + (𝑎1𝑥 + 𝑎3𝑥
3 +⋯+ 𝑎2𝑚−1𝑥

2𝑚−1) 

= (𝑎0 + 𝑎2𝑥
2 +⋯+ 𝑎2𝑚−2𝑥

2𝑚−2) + 𝑥(𝑎1 + 𝑎3𝑥
2 +⋯+ 𝑎2𝑚−1𝑥

2𝑚−2) 

= 𝐴1(𝑥
2) + 𝑥𝐴2(𝑥

2) 

In other words: 

𝐴(𝑥) = ∑ 𝑎𝑘𝑥
𝑘

2𝑚−1

𝑘=0

 

= ∑ 𝑎2𝑘𝑥
2𝑘

2𝑚−1−1

𝑘=0

+ ∑ 𝑎2𝑘+1𝑥
2𝑘+1

2𝑚−1−1

𝑘=0

 

= ∑ 𝑎2𝑘𝑥
2𝑘

2𝑚−1−1

𝑘=0

+ 𝑥 ∑ 𝑎2𝑘+1𝑥
2𝑘

2𝑚−1−1

𝑘=0

 

= 𝐴1(𝑥
2) + 𝑥𝐴2(𝑥

2) 
(25) 

Moreover, we deduce that the 

polynomial 𝐴(𝑥′)  can be evaluated using 

the same two polynomials, 𝐴1(𝑥
2)  and 

𝐴2(𝑥
2): 

𝐴(𝑥′) = 𝐴1(𝑥
′2) + 𝑥′𝐴2(𝑥

′2) 

= 𝐴1(𝑥
2) − 𝑥𝐴2(𝑥

2) 
(26) 

Knowing (25) and (26), the 

following recursive solution is proposed 

for evaluating a polynomial 𝐴(𝑥)  of 

degree 2𝑚 − 1  for all 𝑥 ∈ 𝑅2𝑚 ∀𝑚 ∈ ℕ∗ . 

For readability, the notation 2𝑚 = 𝑛  is 

used: 

1. The task is divided into the evaluation 

of 𝑝 and 𝑞. 

2. Evaluating 𝑞  requires minimal 

processing power once 𝑝 is evaluated. 

3. Evaluating 𝑝  is synonymous to the 

evaluation of two polynomials, 𝐴1(𝑥) 
and 𝐴2(𝑥) of degree 2𝑚−1 − 1, for all 

values 𝑥 ∈ 𝑅2𝑚−1. The two evaluations 

are less difficult instances of the initial 

task, thus recurrence ensues. 

Remark: This solution has a 

complexity of 𝑂(𝑛 log2 𝑛). 
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𝑝

{
 
 

 
 
𝐴(𝑥0) = 𝐴1(𝑥0

2) + 𝑥0𝐴2(𝑥0
2)

𝐴(𝑥1) = 𝐴1(𝑥1
2) + 𝑥1𝐴2(𝑥1

2)
⋮ ⋮ ⋮ ⋮ ⋮

𝐴 (𝑥𝑛
2
−1
) = 𝐴1 (𝑥𝑛

2
−1

2 ) + 𝑥𝑛
2
−1
𝐴2 (𝑥𝑛

2
−1

2 )

 

𝑞

{
  
 

  
 𝐴 (𝑥𝑛

2
) = 𝐴1(𝑥0

2) − 𝑥0𝐴2(𝑥0
2)

⋮ ⋮ ⋮ ⋮ ⋮

𝐴(𝑥𝑛−2) = 𝐴1 (𝑥𝑛
2
−2

2 ) − 𝑥𝑛
2
−2
𝐴2 (𝑥𝑛

2
−2

2 )

𝐴(𝑥𝑛−1) = 𝐴1 (𝑥𝑛
2
−1

2 ) − 𝑥𝑛
2
−1
𝐴2 (𝑥𝑛

2
−1

2 )

 

3.2 Matrix Reformulation 

The following product between a 

quadratic matrix and a column vector can 

be evaluated through the recursive 

polynomial evaluation method described 

above. This is preferable given the low 

complexity of the solution. 

𝜔 = 𝑒𝑖2𝜋
1
𝑛 ∈ 𝑅𝑛 | 𝑛 = 2

𝑚; 𝑚 ∈ ℕ∗ 

[
 
 
 
 
𝐴(𝜔0)

𝐴(𝜔1)

𝐴(𝜔2)
⋮

𝐴(𝜔𝑛−1)]
 
 
 
 

=

[
 
 
 
 
𝜔0⋅0 𝜔0⋅1 𝜔0⋅2 ⋯ 𝜔0(𝑛−1)

𝜔1⋅0 𝜔1⋅1 𝜔1⋅2 ⋯ 𝜔1(𝑛−1)

𝜔2⋅0 𝜔2⋅1 𝜔2⋅2 ⋯ 𝜔2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮
𝜔(𝑛−1)0 𝜔(𝑛−1)1 𝜔(𝑛−1)2 ⋯ 𝜔(𝑛−1)(𝑛−1)]

 
 
 
 

[
 
 
 
 
𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1]
 
 
 
 

 

Given (21), it can be deduced that 

the discrete Fourier transform consists of 

such a product. Therefore, it can be 

evaluated with minimal complexity if the 

matrix involved is written according to the 

following rule: 

𝑒−𝑖2𝜋𝜈𝑘
1
𝑅 = 𝜔𝑘 ∀𝑘 ∈ {0,1, … , 𝑛 − 1} 

(27) 

Reformulating (21), we get: 

[
 
 
 
 
 
𝑓�̂�(𝜈0)

𝑓�̂�(𝜈1)

𝑓�̂�(𝜈2)
⋮

𝑓�̂�(𝜈𝑛−1)]
 
 
 
 
 

=
2

𝑛

[
 
 
 
 
 
 𝑒−𝑖2𝜋

0⋅0
𝑛 𝑒−𝑖2𝜋

0⋅1
𝑛 𝑒−𝑖2𝜋

0⋅2
𝑛 ⋯ 𝑒−𝑖2𝜋

0(𝑛−1)
𝑛

𝑒−𝑖2𝜋
1⋅0
𝑛 𝑒−𝑖2𝜋

1⋅1
𝑛 𝑒−𝑖2𝜋

1⋅2
𝑛 ⋯ 𝑒−𝑖2𝜋

1(𝑛−1)
𝑛

𝑒−𝑖2𝜋
2⋅0
𝑛 𝑒−𝑖2𝜋

2⋅1
𝑛 𝑒−𝑖2𝜋

2⋅2
𝑛 ⋯ 𝑒−𝑖2𝜋

2(𝑛−1)
𝑛

⋮ ⋮ ⋮ ⋱ ⋮

𝑒−𝑖2𝜋
(𝑛−1)0
𝑛 𝑒−𝑖2𝜋

(𝑛−1)1
𝑛 𝑒−𝑖2𝜋

(𝑛−1)2
𝑛 ⋯ 𝑒−𝑖2𝜋

(𝑛−1)(𝑛−1)
𝑛 ]

 
 
 
 
 
 

[
 
 
 
 
𝑓0
𝑓1
𝑓2
⋮

𝑓𝑛−1]
 
 
 
 

 

(28) 

Relation (28) is one of the forms of 

the fast Fourier transform. 

3.3 Consequences of Matrix 

Reformulation 

In the context of (21), (27) and 

(28), the matrix reformulation of the 

discrete Fourier transform has the 

following implications on the frequencies 

on which the transform can be applied: 

𝑒−𝑖2𝜋𝜈𝑘
1
𝑅 = 𝑒−𝑖2𝜋

𝑘
𝑛 ⟺ 

𝜈𝑘 = 𝑘
𝑅

𝑛
⟺ 

Δν = νk+1 − 𝜈𝑘 =
𝑅

𝑛
 

(29) 

In conclusion, the discrete Fourier 

transform can be calculated efficiently 

when the frequencies involved are 



Bulletin of Micro and Nanoelectrotechnologies, ISSN 2069-1505 

 27 

equidistantly distributed over the spectrum 

described by the signal's sampling rate. 

Therefore, relations (29) and (19) imply 

that, given 𝑛 = 2𝑚 ∀𝑚 ∈ ℕ∗  readings of 

signal 𝑓 ∈ 𝐴  which contains the basic 

analog signals 𝑔𝑘 ∈ 𝐸 , the fast Fourier 

transform determines the defining 

parameters (𝑎𝑘, 𝜃𝑘) ∈ ℝ × ℝ where: 

𝜈𝑘 = 𝑘
𝑅

𝑛
 ∀𝑘 ∈ {0,1, … ,

𝑛

2
− 1} 

II. Technical Implementation 

This paper demonstrates the 

engineering utility of the Fourier transform 

in the design of a protocol for data transfer 

through audio signals. 

Axiom: Any volume of data is 

transmissible as 𝑛 ∈ ℕ∗ parallel digital 

signals. For 𝑛 = 1 , the transmission is 

considered to be serial, not parallel. 

The set of time-dependent digital signals 

can be defined as follows: 

𝐷 = {ℎ(𝑡) | ℎ: ℝ → {0,1}} 

Theorem: A communication 

channel capable of maintaining the signal 

𝑓 ∈ 𝐴 may be used for the transmission of 

𝑛  parallel digital signals if the following 

conditions are met: 

1. Each digital signal ℎ𝑘 ∈ 𝐷 | 𝑘 ∈
{0,1, … , 𝑛 − 1} involved modulates the 

amplitude of an analog signal 𝑔𝑘 ∈ 𝐸, 

of known parameters (𝑎𝑘, 𝜈𝑘, 𝜃𝑘) , 

which is part of the signal 𝑓: 

𝑓(𝑡) = ∑𝑔𝑘(𝑡)

𝑛−1

𝑘=0

 

= ∑ℎ𝑘(𝑡)𝑎𝑘 cos(2𝜋𝜈𝑘𝑡 + 𝜃𝑘)

𝑛−1

𝑘=0

 

2. Each digital signal ℎ𝑘 ∈ 𝐷 | 𝑘 ∈
{0,1, … , 𝑛 − 1}  involved is deductible 

by demodulating the amplitude of an 

analog signal 𝑔𝑘 ∈ 𝐸 that is part of 𝑓, 

where its 𝜈𝑘 parameter is known: 

ℎ𝑘(𝑡) = {
0 |𝑓�̂�(𝜈𝑘)| ∈ [0, 𝜖)

1 |𝑓�̂�(𝜈𝑘)| ∈ [𝜖,∞)
 

Remark: The 𝜖  constant defines 

the background noise threshold of the 

signal 𝑓 . Any signal whose amplitude is 

below this threshold will be omitted. 

Under ideal circumstances, 𝜖 → 0. 

4 The FFT Algorithm 

See Figure 4 and Figure 5 for 

details on the implementation of the 

recursive polynomial evaluation solution 

on which the fast Fourier transform relies. 

Figure 4: Recursive Polynomial Evaluation Algorithm 
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Figure 5: C++ Source Code 

complex<long double>* fft(complex<long double>* c, complex<long double>* v, 

unsigned int s) 

{ 

 if(s == 1){ 

  complex<long double> *r = new complex<long double>[1]; 

  *r = *c; return r; 

 } 

 unsigned int hs = s/2; 

 complex<long double> vaux; 

 complex<long double> *r = new complex<long double>[s]; 

 complex<long double> *nv = new complex<long double>[s+hs]; 

 complex<long double> *c1 = nv+hs, *c2 = c1+hs; 

 for(unsigned int i=0; i<hs; i++){ 

  vaux = v[i]; nv[i] = vaux*vaux; 

  c1[i] = c[2*i]; 

  c2[i] = c[2*i+1]; 

 } 

 complex<long double>* r1 = fft(c1, nv, hs); 

 complex<long double>* r2 = fft(c2, nv, hs); 

 for(unsigned int i=0; i<hs; i++){ 

  r[i] = r1[i]+v[i]*r2[i]; 

  r[i+hs] = r1[i]-v[i]*r2[i]; 

 } 

 delete[] nv; 

 delete[] r1; 

 delete[] r2; 

 return r; 

} 

5 Protocol Definition 

This paper demonstrates the design 

of a data transfer protocol that can be 

attached to the command line terminal of a 

computer, allowing its control through 

processes of transmission and reception of 

sound signals. Consequently, the protocol 

is responsible for using a computer's audio 

interface as a control interface. For this 

purpose, the following are required: 

1. Automatic audio interface calibration 

for the computers involved 

2. Conversion of digital data to analog 

signals and vice versa 

3. Identification of the computers 

involved 

4. Possibility of performing simple, 

request-response transactions 

5. Operation at transfer speeds of at least 

64b/s 

6. Simultaneous operation of independent 

instances of the protocol, using the 

same communication channel 

7. Automatic detection of transfer errors 
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Figure 6: Transmission Diagram for n Bands 

Figure 6 illustrates the segments 

that make up a transmission on 𝑛 bands: 

Amplitude Calibration: A single 

signal of maximum amplitude is 

transmitted on band 𝑛 − 1, followed by a 

short pause. The beginning of a 

transmission is marked and the maximum 

amplitude used by it is communicated. 

Spectrum Calibration: A single 

signal is transmitted on each of the bands 

𝑛 − 1  and 0 . The boundaries of the 

transmission's spectrum are marked. 

Timing Calibration: An 

alternating signal is transmitted on band 

𝑛 − 1 . The frequency with which the 

signal changes state is marked. The 

segment includes a terminating signal. 

Bandwidth Calibration: Only 

bands 𝑛 − 1  and 0  are used, their 

frequencies have been previously marked. 

The number of bands used by the data 

transfer is communicated in the form of a 

byte: 

1. The signal on band 𝑛 − 1  is a clock 

signal. 

2. The signal on band 0 is a serial data 

stream. 

The segment includes a terminating 

signal. 

Data Transfer: Bands 
{0,1, … , 𝑛 − 1}  are used. An arbitrary 

volume of data is transmitted: 

1. Signals on bands {𝑛 − 1, 𝑛 − 2}  are, 

simultaneously, clock and control 

signals, see Table 1 for more details. 

2. Signals on bands {0,1, … , 𝑛 − 3} are a 

parallel data stream. 

The segment includes a terminating 

signal. 

Checksum Transfer: In the same 

configuration as the previous segment, the 

first 16 bytes of the SHA-256 checksum of 

the aforementioned data volume are 

communicated. 

Figure 7: Transmission Band Assignment 

 

Table 1: Control Band Values 

𝑛 − 1 𝑛 − 2 State 

0 0 Invalid signal 

0 1 Clock 0 

1 0 Clock 1 

1 1 Terminating Signal 
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Remark: Only readings of the 

control bands are used in detecting 

changes in the state of the signal. 

Remark: In a terminating signal, 

data bands with ordinal numbers 
{0,2,4, … } take the value 1, the rest take 

the value 0. 

6 Protocol Integration 

6.1 Means of Transmission and 

Reception 

Mediation between the protocol 

and the sound architecture of the operating 

system is performed by a PulseAudio 

server, as described in Figure 8. The 

PulseAudio subsystem manages the 

physical resources of the system and 

centralizes the audio streams produced by 

clients, allowing multiple instances of the 

protocol to run on a single sound card 

without interference. 

Figure 8: PulseAudio Integration 

 

6.2 System Service Integration 

The protocol is implemented in the 

form of two programs: 

A. emt Protocol client. Transmits 

commands to a computer running the 

emtd program and waits for a response 

in the form of a transmission 

containing the output data of the 

commands. 

B. emtd Protocol server. Receives 

commands sent by a computer running 

the emt program, executes commands 

as the user responsible for invoking the 

program and responds in the form of a 

transmission containing the output data 

of the commands. 

A complete description of the 

usage of the two programs can be found in 

the manual with which they are 

distributed, accessible through the 

following commands: 

man emt 

man emtd 

The server utility can be integrated 

as a system service managed by GNU 

systemd [3]. This way, a command line 

terminal will become available through a 

sound card every time the system is turned 

on. See Figure 9 for details. 
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Figure 9: Configuration for emt@.service 

[Unit] 

Description=Terminal running on %I 

Documentation=man:emtd(8) 

BindsTo=pulseaudio.service 

After=pulseaudio.service 

 

[Service] 

User=root 

Type=notify 

EnvironmentFile=-/run/emtd/%I 

ExecStartPre=/usr/bin/emtdevparam -b -s %I 

ExecStart=/usr/sbin/emtd -i $INDEX_IN -o $INDEX_OUT -m $MIN -M  

$MAX -f $FREQ -b $BANDW -d $BANDS 

ExecStopPost=/bin/rm -f /run/emtd/%I 

Restart=on-failure 

RestartPreventExitStatus=7 8 

TimeoutStartSec=5 

 

[Install] 

WantedBy=multi-user.target 

Alias=emtd@.service 

Notice: The system service uses a 

system-wide PulseAudio instance [4], 

instead of a normal user instance. The 

configuration in Figure 9 states this 

requirement. 

The procedure for replacing 

multiple PulseAudio user instances with a 

single system-wide PulseAudio instance is 

described in the pamode utility, 

distributed along with the emt and emtd 

programs. 

III. Final Results 

Figure 10 contains the QR code of 

the emt-0.0-src.tar.xz archive. It contains 

all that is necessary for compiling and 

packaging the programs mentioned in this 

paper using the Debian Linux format [5]. 

This can be done through the included 

sequence of commands. 

Figure 10: QR Code of the Implementation 

 

unxz emt-0.0-src.tar.xz; 

tar -xf emt-0.0-src.tar; 

cd emt-0.0-src/emt-0.0/; 

sudo debuild; 

7 Testing 

Figure 11: Physical Connection Between a Dell E6410 

(2011) and a Dell D630 (2007) 

 

Notice: The sound cards of the two 

computers are connected by 3.5mm audio 

cables. The protocol works using any 

means of bidirectional transfer of the audio 

signal: cable, radio, telephony, recording 

and playback, etc. 
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Figure 12: Connection Procedure and the 

Transmission of a Command 

 

Figure 13: Transfer Error Detection and Automatic 

Retransmission 

 

Figure 14: Non-interactive Usage 

 

Notice: Invoking the emt program 

inside an infinite loop broken only by a 

return code of 0, as shown above, results in 

reattempting communication every time an 

error occurs. This procedure is useful in 

writing non-interactive scripts. 

Figure 15: Runtime Log of Receiving a Message 

 

Notice: Each log entry displays the 

determined state of the signal. This 

diagnostic data is not displayed on screen, 

instead it remains in memory and can be 

read by the journalctl program, part of 

GNU systemd. 
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Abstract - The paper proposes a theoretical study on the 

theorem of ponderomotive force (in electrostatic and 

magnetic field) with the aim of the identification the new 

unconventional actuation force, either the direct relations 

between the electrostatic and magnetic relation or use the 

isotropy and anisotropy of materials. Also, we present the 

condition of discontinuity permittivity and permeability of 

subdomains as the actuation effects. 

 

Index Terms - ponderomotive, force, electrostatic, 

magnetic field, electromechanical actuation, permittivity, 

discontinuity. 

I. INTRODUCTION 

The theorem of the ponderomotive actions on 

the electrostatic field and on magnetic field [1-3] 

represent the main theoretical relations of the 

electromechanical actuations and actuators [4-6]. 

The form of this theorems are [1-3]: 

 Theorem of the ponderomotive forces in 

electrostatic field 

 

𝑓�̅�𝑙 = 𝜌𝑣�̅� −
𝐸2

2
𝑔𝑟𝑎𝑑𝜀

+
1

2
𝑔𝑟𝑎𝑑 (𝐸2

𝜕𝜀

𝜕𝜏
𝜏) 

(1) 

 

 Theorem of the ponderomotive forces in 

magnetic field 

 

𝑓�̅� = 𝐽̅ × �̅� −
1

2
𝐻2𝑔𝑟𝑎𝑑(𝜇)

+
1

2
𝑔𝑟𝑎𝑑 (𝐵2

𝜕𝜇

𝜕𝜏
𝜏) 

(2) 

 

where: 𝜌𝑉 −volum density of electric chrge, �̅�, �̅�-

electric field intensity and electric induction 

�̅�, �̅� −magnetic field intensity and magnetic 

induction, 𝜀 −electric permittivity of the medium 

where act the ponderomotive forces, 𝜇 −medium 

permeabuility where act the ponderomotive forces 

mediului,𝜏 −mass density. 

The explicit forms of the relations (1), (2) are: 

 

𝑓�̅� = 𝑓𝑒𝑠̅̅̅̅ + 𝑓𝑒𝑝̅̅ ̅̅ + 𝑓𝑒𝑙𝑠̅̅ ̅̅  (3) 

  

𝑓𝑚̅̅ ̅ = 𝑓�̅� + 𝑓𝑚𝜇̅̅ ̅̅ ̅ + 𝑓𝑚𝑚𝑠̅̅ ̅̅ ̅̅  (4) 
 

where  𝑓𝑒𝑠 −̅̅ ̅̅ ̅̅ ̅ electric force volume density because 

of the electric volume density charge in electric 

field; 𝑓𝑒𝑝̅̅ ̅̅ - electric force volume density when 

permittivity is a point function and is independent 

of electric field orientation (piezoelectric 

actuation), 𝑓𝑒𝑙𝑠̅̅ ̅̅ − electric force volume density in 

the case when permittivity is a mass function 

(electrostrictive actuation), 𝑓�̅� −Lorentz force 

volume density, 𝑓𝑚𝜇̅̅ ̅̅ ̅ − magnetic force volume 

density when permeability is a point function, 

𝑓𝑚𝑚𝑠̅̅ ̅̅ ̅̅ − magnetic force volume density when 

permeability is a function of the mass density 

(magnetostriction actuation). 

In Table 1, it is presented a synthetic situation 

on the electromechanical actuation field. 
 

Table 1 

The electro-

mechanical 

actuation 

Research field 

preoccupations 
Applications Commentaries 

Piezoelectric 
* 

 

**** 
 

Magneto-

strictive 

**** ** Subdomain 

(niche) important 

both for research 

and applications 

Electro-

striction 

**** ** Subdomain 

important both for 

research and 

applications 

Electro-

magnetic 

(electro-

dynamics) 

*** *** Subdomain 

(niche) important 

both for research 

and applications 

Electro-

thermics 

** ** Subdomain 

(niche) important 

both for research 

and applications 

Electro-

statics 

*** ** Subdomain 

(niche) important 

for research 

(MEMS) 

Electro-

chemical 

** * Subdomain 

(niche) important 

for research 

(MEMS) 

Lorentz 

Force 

**** * Subdomain 

(niche) important 

for research 

Legend: *weak interest; ****very important interest. 

The tendency is indicated with arrows. 
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From Table 1, there are clear the tendencies in 

the field research and the application fields for 

each the electromechanical actuation types. 

An essential theoretic study of the identification 

of the new niches in research and applications 

implicates the followings main electromagnetic 

field theorems and laws [1-3]: 

 The general laws; 

 The material laws; 

 The ponderomotive laws in electrostatics and 

stationary magnetic field. 

II. A THEORETICAL STUDY TO 

IDENTIFICATE THE NEW ACTUATION 

FORCES 

An electromechanical actuator can be defined 

[4, 6] as an electromechanical conversion system 

which realizes a drive electromotion control of the 

parameters; linear or angular displacement, speed 

and acceleration (see Fig.1). 

 

 
Fig. 1. The actuator as a conversion system 

 

More levels represent: electrothermic 

conversion level, electrochemical conversion level 

etc. or succession of this conversion types. 

A first analysis or theoretical study, it is 

accomplished on the theorem of the 

ponderomotive forces in electrostatic field (see 

relations (1) and (3)). 

We consider in Table 2, an analysis of those 

three electrostatics forces (with the simplification 

and shortening form of the forces) with the 

possible or potential between themselves. 

 
Table 2. A synthetic analysis of the interaction 

ponderomotive electrostatics forces 

 𝑓𝑒𝑠̅̅̅̅  𝑓𝑒𝑝̅̅ ̅̅  𝑓𝑒𝑙𝑠̅̅ ̅̅  

𝑓𝑒𝑠̅̅̅̅  𝑓𝑒𝑠𝑠̅̅ ̅̅ ̅ 𝑓𝑒𝑠𝑝̅̅ ̅̅ ̅ 𝑓𝑒𝑠𝑙̅̅ ̅̅̅ 

𝑓𝑒𝑝̅̅ ̅̅  𝑓𝑒𝑠𝑝̅̅ ̅̅ ̅ 𝑓𝑒𝑝𝑝̅̅ ̅̅ ̅ 𝑓𝑒𝑝𝑙̅̅ ̅̅ ̅ 

𝑓𝑒𝑙𝑠̅̅ ̅̅  𝑓𝑒𝑠𝑙̅̅ ̅̅̅ 𝑓𝑒𝑝𝑙̅̅ ̅̅ ̅ 𝑓𝑒𝑙𝑙̅̅ ̅̅  

 

In this way, we obtain still 3 distinct hybrid 

actuation forces (the distinct force is to the 

crossing of a line force with a column force), down 

we consider the interaction with the vector 

addition: 

 

𝑓𝑒𝑠𝑝̅̅ ̅̅ ̅ = 𝑓𝑒𝑝̅̅ ̅̅ + 𝑓𝑒𝑠̅̅̅̅  (5) 

  

𝑓𝑒𝑠𝑙 = 𝑓𝑒𝑙𝑠̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑓𝑒𝑠̅̅̅̅  (6) 

  

𝑓𝑒𝑝𝑙̅̅ ̅̅ ̅ = 𝑓𝑒𝑙𝑠̅̅ ̅̅ + 𝑓𝑒𝑝̅̅ ̅̅  (7) 

 

However, this interaction can be also 

multiplicative. On the matrix diagonal, the forces 

are not distinct. Similarly, in the case of the 

ponderomotive forces in magnetic field we obtain 

the Table 3. 

 
Table 3. A synthetic analysis of the interaction 

ponderomotive magnetic forces 

 𝑓�̅� 𝑓𝑚𝜇̅̅ ̅̅ ̅ 𝑓𝑚𝑚𝑠̅̅ ̅̅ ̅̅  

𝑓�̅� 𝑓𝑙𝑙̅̅ ̅ 𝑓𝐿𝜇̅̅ ̅̅  𝑓𝑚𝐿𝑠̅̅ ̅̅ ̅̅  

𝑓𝑚𝜇̅̅ ̅̅ ̅ 𝑓𝜇𝐿̅̅ ̅̅  𝑓𝑚𝜇𝜇̅̅ ̅̅ ̅̅  𝑓𝑚𝜇𝑠̅̅ ̅̅ ̅̅  

𝑓𝑚𝑚𝑠̅̅ ̅̅ ̅̅  𝑓𝑚𝑠𝐿̅̅ ̅̅ ̅̅  𝑓𝑚𝑠̅̅ ̅̅  𝑓𝑚𝑠𝑠̅̅ ̅̅ ̅ 
 

The next list includes the magnetic distinguish 

the actuation force: 

 

𝑓𝐿𝜇̅̅ ̅̅ , 𝑓𝑚𝑙𝑠̅̅ ̅̅ ̅, 𝑓𝑚𝜇𝑠̅̅ ̅̅ ̅̅  

 

Similarly, it is possible to show the new 

actuation hybrid forces among the interaction of 

the electrostatic forces and the magnetic forces 

(which appear in the relation of the ponderomotive 

forces), see Table 4. 

 
Table 4. A synthetic analysis of the interaction 

ponderomotive magnetic forces 

 𝑓𝑒𝑠̅̅̅̅  𝑓𝑒𝑝̅̅ ̅̅  𝑓𝑒𝑙𝑠̅̅ ̅̅  

𝑓�̅� 𝑓𝑒𝑠𝐿̅̅ ̅̅ ̅ 𝑓𝑒𝑝𝐿̅̅ ̅̅ ̅ 𝑓𝑒𝑙𝑠𝐿̅̅ ̅̅ ̅̅  

𝑓𝑚𝜇̅̅ ̅̅ ̅ 𝑓𝑚𝜇𝑒𝑠̅̅ ̅̅ ̅̅ ̅ 𝑓𝑚𝜇𝐿̅̅ ̅̅ ̅̅  𝑓𝑒𝑙𝑠𝑚𝜇̅̅ ̅̅ ̅̅ ̅̅  

𝑓𝑚𝑚𝑠̅̅ ̅̅ ̅̅  𝑓𝑒𝑠𝑚𝑚𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑓𝑒𝑝𝑚𝑚𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑓𝑒𝑙𝑠𝐿̅̅ ̅̅ ̅̅  

 

In this case, all the force of the matrix of Table 

4 can be considered news. 

Through this study are identified 15 new 

actuation forces: 3 electrostatic forces, 3 magnetic 

forces and 9 hybrid forces! 
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III. OTHER NECESSARY LAWS 

In the electromechanical actuation theory [4, 5, 

7-11], others general laws [1-3] interfere that 

cannot neglect, because is not possible to 

comprehend the functional mechanisms of the 

actuation: 

 the laws with direct implication: electrolysis 

law, 

 the law of magnetic circuit,  

 the law of energy transformation on the electric 

conductors, etc., 

 the laws with indirect implication;  

 the law of electric conduction,  

 the law of temporary electric polarization,  

 the law of temporary magnetic polarization, etc. 

For example, the differential form of the 

electrolysis law: 

 
𝑑𝑚

𝑑𝑡
=

𝐴𝑖

𝑛𝑣𝐹0
 (8) 

 

where: i - the electric current, m - the fall out mass 

to the electrochemical process, A - the atomic 

mass, nv - the element valence, 𝐹0- the Faraday 

ratio. 

An electrochemical actuator, which function on 

the electrolysis law, has the simple conversion in 

Fig. 2. 

 

𝑸 = 𝑼𝑰𝒕 [𝑱] (9) 

 

This heating energy produces the linear surface 

or volume dilatation and the actuation conversion 

is presented in Fig. 3. 

 

 
Fig. 3. The conversion of the electrothermic actuator 

 

An example of the electrothermic actuator is the 

thermal relay [5]. 

Another important actuation force is the 

Laplace force (electromagnetic force) [1-3]. The 

Laplace formula is: 

 

𝑑𝐹𝐿̅̅̅ = 𝑖𝑑�̅� × �̅� (10) 

 

The formula represents the force acting on a 

current element 𝑖𝑑𝑙 in a magnetic field of a 

magnetic induction �̅�. 

If we integrate we obtain: 

 

𝐹�̅�∫ 𝑑𝐹𝐿̅̅̅
𝐶

= 𝑖∫ 𝑑�̅� × �̅�
𝐶

 (11) 

The electromagnetic force has different forms 

[12], among very important is the force between 

two conductors with length l and distance a which 

are crossed by the electric currents, 𝑖1, 𝑖2 [13]: 

 

𝐹𝑙𝑖 = 2𝑖1𝑖2
𝑙

𝑎
𝜑(
𝑎

𝑙
 )10−7[𝑁] (12) 

 

In Fig. 4, there are presented some structures of 

electromagnetic actuation based on the Laplace 

(electromagnetic) force. 

 

 
Fig. 4. Different structures of electromagnetic actuation 

 

In Fig. 4, the structures include an electric 

conductor and a permanent magnet to outward side 

(a), an electric conductor between two permanent 

conductor (b), and two electric conductor with two 

opposite currents (c). 

IV. AN ANALYSIS OF THE 

PONDEROMOTIVE FORCES IN 

ELECTROSTATIC FIELD 

The analysis begins with the first term of the 

relation (1): 

 

𝑓𝑒𝑠̅̅̅̅ = 𝜌𝑣�̅� (13) 

 

where 𝒇𝒆𝒔 −̅̅ ̅̅ ̅̅ ̅ electric force volume density because 

of the electric volume density charge in electric 

field. 
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A relation between the conductivity and 

resistivity is: 

 

𝜎𝑣 =
1

𝜌𝑣
 (14) 

 

and a tensor expression in anisotropy condition: 

 
1

𝜎
= 𝜌𝑣̿̿ ̿ (15) 

 

with a tensor  description [2, 3]: 

 

𝜎𝑣̿̿ ̿ = |

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

| (16) 

 

which can indicate other electromechanical 

actuation types with different force on each axis, 

as in Fig. 5, function by the resistivity 

(conductivity): 

 

 
Fig. 5. The different force (anisotropic force) on each axis 

 

Thus, is possible to speak on materials with 

different actuation behavior (displacement, speed, 

force) to each axis. 

Another main analysis is for 𝑓𝑒𝑝̅̅ ̅̅ - electric force 

volume density in the case when permittivity is a 

point function and is independent of electric field 

orientation (piezoelectric actuation): 

 

𝑓𝑒𝑝̅̅ ̅̅ = −
𝐸2

2
𝑔𝑟𝑎𝑑(𝜀) (17) 

 

where according to the mathematic rules [1, 2, 13, 

14]: 

 

𝑔𝑟𝑎𝑑(𝜀) = 𝑙𝑖𝑚
∫ 𝜀𝑑𝐴
𝑆

𝑉 𝑠
 (18) 

  

𝑔𝑟𝑎𝑑(𝜀) = ∇𝜀 = 𝑖̅
𝜕𝜀

𝜕𝑥
+ 𝑗̅

𝜕𝜀

𝜕𝑦
+ �̅�

𝜕𝜀

𝜕𝑧
 (19) 

 

where S is the surface which closes the volume VS, 

𝑑𝐴̅̅̅̅  the surface element vector, and P - point. 

If ε is constant, then 𝒈𝒓𝒂𝒅(𝜺) = 𝟎 and explicit 

the 𝒇𝒆𝒑 = 𝟎. 

In this way, the electric permittivity of the 

domain has a variable distribution and the vector 

𝒈𝒓𝒂𝒅𝜺 can be represented as in Fig. 6. 

 

 
Fig. 6. A representation of grad(ε) on a dielectric domain 

 

In the same idea, an analysis of the 

electrostrictive force: 

 

𝑓�̅�𝑙𝑠 =
1

2
𝑔𝑟𝑎𝑑 (𝐸2

𝜕𝜀

𝜕𝜏
𝜏) (20) 

 

where 
𝜕𝜀

𝜕𝜏
- appears as the partial differential, also it 

means that a permittivity variation (even the 

discontinuities problems) requires a distinct 

commentary in the purpose to identify the new the 

new electromechanical actuation functional effects 

and structures. 

So, we can see the permittivity has main 

distribution variation or discontinuities, we say 

about same distinct actuation structures (see Fig. 

7). 

 

 

grad(ε) 
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Fig. 7. The different electromechanical actuation structures 
 

In Fig. 7a), it is presented a succession of 

piezoelectric blades with different electric 

permittivity for a linear actuation, the separates 

element with different permittivity for dominoes 

actuation structures are presented in Fig. 7b), a 

mosaic structure is showed in Fig. 7c), and a 

progressive structure of permittivity is included in 

Fig. 7d). 

 

V. DISCUSSION 

The analysis of theorem of ponderomotive 

forces in electrostatic field and the theorem of 

ponderomotive forces in magnetic field (see 

Tables 2, 3, and 4), distinguishes 15 new actuation 

forces: 3 electrostatic forces, 3 magnetic forces 

and 9 hybrid forces, potential actuation functional 

effects. This potential actuation forces is extended 

with the thermic and electrochemical actuation 

functional effects. 

Another source for an innovating landing are 

the structure of the actuation and the 

electromechanical actuators [4, 8, 10]. 

A theoretical and experimental interesting 

study is represented by the surface discontinuity 

between different subdomains of the actuation 

structure, as in Fig. 8 where there are 3 distinct 

subdomain in the main support of actuation: 

 

Ω1(𝜀1, 𝜏1), 
Ω2(𝜀2, 𝜏2), 
Ω3(𝜀3, 𝜏3). 

 

Each subdomain with different main 

parameters, as for instance permittivity and mass 

density. Therefore, it can appears to the 

discontinuity surface the, two independent 

electromechanical force actuation. 

 

 
Fig. 8. An actuation structure with two independent 

actuation force 
 

However, the identification of the new 

unconventional actuation forces and functional 

effects is not possible without the collaboration of 

the material specialists. 

VI. CONCLUSIONS 

The paper proposes a theoretical mode, or way, 

to identify the unconventional actuation force 

developed by the theorem of the ponderomotive 

force in electric field and the theorem of the 

ponderomotive force in magnetic field and the 

relation among this force, for the hybrid actuation 

structures. 

Certainly that is necessary a critical analysis for 

to know and to select or to choose the efficiency 

actuation forces. 
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